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This dissertation deals with the development of a method to predict the orbital
lifetimes of uncontrolled free tethers and tether-trailing satellites originating in low-to-
moderate altitude Earth orbits. The problem is solved by application of the "empirical
method". Two mathematical models to simulate the orbital evolution of tethered
systems are developed. In both models the system is discretized into a series of
interconnected point masses, orbiting an oblate Earth and transiting an oblate,
rotating, temporally and globally averaged atmosphere. For aerodynamic drag
calculations, tether segments are modeled as right circular cylinders, and any end-body

is modeled as a sphere. Drag coefficients vary as a function of shape and Knudsen
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number. In the "multibody model", connections between masses are elastic, and the
system is free to assume any orientation. Newtonian equations of motion are
numerically integrated. In the "orbital element propagation model", connections
between masses are inelastic, and the system is constrained to remain aligned along
the local vertical. Gauss’ form of Lagrange’s Planetary Equations, in terms of
equinoctial elements, are used to propagate the orbital elements describing the orbit
of the system’s center of mass. The element propagation model is shown to provide,
for initially unstretched systems aligned along the local vertical, accurate results, very
quickly, as compared to those obtained using the multibody model. An algorithm to
train feed-forward artificial neural networks, by minimizing the sum of the squares of
percent errors, is derived and shown to be invaluable in training networks to represent
widely-spread real-valued data. A hybrid training approach, using the derived
algorithm in conjunction with the standard backpropagation training algorithm, is
described and demonstrated. This approach often reduces network training time, and
it is used to train three networks with lifetime data provided by the element propaga-
tion model: one to predict the orbital lifetimes of free tethers, one to predict lifetimes
of upward-deployed subsatellites trailing a tether, and one to provide correction
factors that account for the effects of initial orbit inclination and argument of latitude.
The accuracies of network-predicted lifetimes, as compared to those obtained using
the multibody model, are demonstrated in 90 cases with randomly chosen initial
conditions and system physical dimensions. In all cases, the network’s results are

shown to be accurate to within = 20% of results obtained using the multibody model.
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INTRODUCTION

The idea of using tethers in space is not a new concept. In 1895, Tsiolkovsky
suggested connecting large masses in space by a long thin string."? In 1960,
Artsutanov envisioned an Earth-based "beanstalk”, rooted at the equator and extend-
ing to geosynchronous altitude, which would allow one to leave the planet by simply
climbing to the top and letting go.>*

The first tether experiments in space were conducted in 1966, during the last
two Gemini missions. In both tests, the manned Gemini spacecraft was docked to an
unmanned Agena rocket, a 100 foot tether was attached to both vehicles, and the
vehicles were separated.>® During Gemini 6, the tethered system was spun about its
center of mass, using the Gemini thruster reaction control system, to provide a low
artificial gravity. On Gemini 7, the reaction control system was used to orient the
vehicles along the local vertical, and passive gravity-gradient stabilization was achieved
when the control system was deactivated.

In 1972, M. D. Grossi, a radiophysicist at the Harvard-Smithsonian Center for
Astrophysics (SAO), proposed that NASA deploy from the Space Shuttle a 20-to-100
kilometer (km) electrodynamic tether to be used as an antenna to radiate electromag-
netic waves in the ULF band.” In 1974, SAO gave the project the name SKYHOOK,

and made the study of the long antenna’s dynamics a top priority.




Professor Guiseppe Colombo, also at SAO, was given the lead in the dynamical
analysis, and he quickly realized that a long wire could also serve as a "Shuttle-borne
skyhook” to support a scientific satellite.® This led to a series of studies at SAO and
elsewhere in the United States and Italy on uses for a so-called Tethered Satellite
System (TSS). The work culminated in an agreement to develop and fly such a system
on the U.S. Space Shuttle.’

Currently, NASA plans two experiments to confirm basic tether phenomena
and to demonstrate the feasibility of simple tether operational concepts. The first,
TSS-1, is devoted to electrodynamics experimentation. It involves a 500 kilogram (kg)
satellite, deployed upward (i.e., away from Earth) on a 20 km tether from the Space
Shuttle’s 300 km altitude orbit.!® TSS-2 will demonstrate the downward deployment
and retrieval of the satellite on a 100 km non-conductive tether."

Shuttle-borne operations are only one item on a growing list of proposed
tethered satellite operations categories. Other proposals include'

(a) Using expendable launch vehicles as "parent” craft.

(b) Using a space station as the tethered parent vehicle for
(1) tether initiated reentry or orbit transfer
of a subsatellite, and/or
(2) local area operations requiring return to
the space station.

(c) Using tethers and/or tethered subsatellite(s) in conjunction
with conventional satellites. Possibilities include payload
lofting, (parent) satellite maneuvering, electrodynamic thrust
and/or power generation, and ULF/ELF/VLF communications.

Many uses of tethered systems have been proposed and studied by the aero-

space community in the past decade. Some scenarios include the purposeful cutting of




the tether at the parent satellite and/or the subsatellite. Furthermore, circumstances
may require that a tether be cut as an emergency measure, or a tether may be
unintentionally cut or broken. Thus, in a number of possible scenarios, a tethered
system may be reduced to an uncontrolled distributed mass, with or without an
attached end-body, orbiting under the influence of only natural forces. Given that
such an occurrence is possible, and may, in fact, be planned, a method of estimating
an uncontrolled system’s lifetime is needed.

Very little definitive research has been done in this area. In 1987,
Bergamaschi and Morana® presented an order of magnitude estimate for the orbital
lifetime of a free tether (i.e., one with no end-masses) released from either a Shuttle
or Space Station orbit. They compared results obtained for a 20 km tether using
three models:

(a) A simple analytical model which treated the tether as a point mass.

(b) A rigid rod model, which used distributed gravitational and drag
forces.

(c) A hinged rigid rod model, which consisted of two equal length
segments, and again used distributed gravitational and drag forces.

In each case only (orbital) planar motion was allowed, and a spherical Earth and
non-rotating spherical atmosphere were modeled. The dynamical equations of motion
for the rigid rod models were integrated numerically, and the results compared to each
other and those of the analytical model. It was learned that there was at least order
of magnitude agreement in the results provided by the three models.

.15

In a later study, Bergamaschi'* used King-Hele’s"” semi-analytical single-mass

orbital lifetime methods to calculate the orbital lifetime of a satellite trailing a tether.




To employ King-Hele’s methods, the total mass of the system and a representative
cross-sectional area were assumed to be located at the satellite’s position. Three
scenarios were considered:

(a) A TSS-1 (satellite deployed 20 km upward from Shuttle) freely
decaying orbit after the tether was severed at the Shuttle.

(b) A reentry mission from a Space Station (satellite deployed 20 km
below Station).

(c) Martian atmosphere entry by a free flying probe trailing a tether.

In each case orbit plane orientation was considered constant. Unfortunately, the
results were not compared with those of any tethered satellite computer simulations,
leaving the validity of using King-Hele’s methods in these scenarios in question.

The objective of this research project was to develop a general method for
predicting the orbital lifetime of uncontrolled free tethers and satellites trailing a
tether. These scenarios currently seem much more likely than an instance of a
"complete” tethered system (i.e., parent-tether-subsatellite) becoming uncontrolled.

The approach used is well known: Compile a database of experimental resuits,
study those results to identify dependent relationships and trends, and derive mathe-
matical expressions to model the relationship between dependent and independent
variables. This is known as the "empirical method".'®

Results obtained using this procedure are successfully employed in many fields.
For example, mechanical engineers performing flow analyses routinely use empirically-
derived expressions to calculate convection heat transfer coefficients.!” Another
example occurs in aeronautical engineering, where empirically-derived relations are

often used to determine the values of various aerodynamic force coefficients for a




given flight vehicle in a configuration of interest. The well-known equation of state
for a perfect gas, P = pRT, is another result that may be derived empirically.”® There
are numerous other possible examples, from many areas of science and engineering.

In short, the empirical method is used when the phenomena being investigated
is sufficiently complex that mathematical models are either not able to satisfactorily
represent the phenomena, or are so complex themselves that they defy analytical
solution.

The orbital evolution of an uncontrolled tethered system in Earth orbit is such
a phenomena. The system operates in a nonlinear, non-trivial gravity field, experi-
ences aerodynamic forces which are nonlinear in altitude, attitude, and velocity, and is
subjected to a variety of additional internal and external forces. A database of
historical lifetime data, such as exists for single-mass satellites, is not available for
these systems. Furthermore, the orbital decay of these systems cannot be realistically
studied experimentally, per se.

We can, however, construct a mathematical model of the dynamical situation,
solve the mathematical equations numerically for a large variety of cases, thereby
creating a "historical database" of sorts, and derive representative expressions from the
data. This is the approach used in this research project.

To obtain data for analysis, two mathematical models of an uncontrolled
tethered system are developed. The first, a multibody model, includes an extensible,
non-conductive tether connecting end-bodies modeled as spheres. It is used as a
"truth" model. The second, a more efficient, dynamically simplified model, is based on

an orbital element propagation technique.




In both models, the tethered system orbits an oblate Earth and transits an
oblate, rotating, temporally and globally averaged reference atmosphere. Aero-
dynamic forces are calculated using drag coefficients which vary as a function of shape
and Knudsen number.

There are many independent variables which will affect the orbital lifetime of a
tethered system. These may be grouped under three headings:

(a) The initial orbit of the system’s center of mass.

(b) The initial motion and orientation of the system about its
center of mass.

(c) The system’s physical dimensions and characteristics.

The mathematical description in each of these categories requires several variables.
For example, the center of mass’ initial orbit can be describcd by using the six classical
orbital elements: the orbit’s semi-major axis, eccentricity, inclination, ascending node
longitude, argument of perigee, and true anomaly. There are, literally, an infinite
number of possible initial configurations and motions of the system about its center of
mass. The description and modeling of these characteristics can consequently vary
from trivial to nearly impossible. Even the system’s physical characteristics offer a
multitude of options. These include the tether’s length, diameter, mass density, and
elastic properties, in addition to the size and shape of any end-body. The location and
method used to attach the tether to an end-body may also affect the system’s motion.

Clearly, the scope of the present study must be narrowed. This is possible for
several reasons. First, the vast majority of planned or proposed Earth-orbiting

tethered satellite missions involve deployment in 28.5° inclination orbits, at low to




moderate altitudes - 200 km to 500 km. Second, the missions typically involve tether
lengths of either 10-20 km or near 100 km. Third, the parent craft will probably be in
a circular or near-circular orbit. Fourth, the deployed tether, with or without an
attached subsatellite, will probably be maintained along, or near, the local vertical.
These characteristics of probable tethered satellite missions provide natural boundaries
for this research project.

First, in this work, tether length is limited to a maximum of 125 km. This is
the maximum length discussed in NASA’s Tethers in Space Handbook for any planned
or proposed Earth mission.”” Tether diameter is assumed to be 2 millimeters, al-
though the general effect of different diameters is investigated. The mass density and
elastic properties of the tether are assumed to be those of Kevlar 29. In so doing, the
physical properties and diameter assumed here will coincide with those most commonly
used in the current literature. Next, the deployed tether, with or without an attached
subsatellite, is initially unstretched, aligned along the local vertical, orbiting as a rigid
rod. These conditions are the goal of many of the various control schemes which
have been proposed for use with tethered systems.® We also assume that the tether
is connected to the center of mass of any attached end-body, and ignore any tether -
end-body aerodynamic interference or interaction effects. We will study only direct
orbits, as no uses of tethered systems in retrograde orbits have been proposed.
Finally, the radii of perigee and apogee of the center of mass’ initial orbit will be
limited to 6578 km and 6878 km, respectively (i.e., 200 and 500 km altitude in an

equatorial orbit). The upper limit corresponds to the maximum altitude of currently




proposed missions, as discussed earlier, and the lower limit is based cn Bergamaschi’s
finding” that the orbital lifetime of tethers, once they reach 200 km altitude, is very
short. We will consider a system’s orbital lifetime to be complete when the system
center of mass reaches 150 km altitude.

Even after applying the constraints just described, a tethered system’s orbital
lifetime will still depend on several independent variables: the center of mass’ initial
orbit, the tether’s length, and the mass and size of any attached end-body. Although
it is theoretically possible for one to analytically identify and express the relationship
between each of these variables (or groups of variables) and the orbital lifetime, it is
certainly not a task with an assured result. The process is complicated by the interde-
pendence of many of the variables. For example, changing the argument of perigee of
the center of mass’ initial orbit will alter the latitude, and, consequently, the altitude
above an oblate Earth, at which the point of closest approach occurs. This, in turn,
will affect the system’s orbital energy loss due to acrodynamic drag, thereby altering
the system’s orbital lifetime. Unfortunately, changing the initial orbit’s inclination will
affect the variation caused by changes in the argument of perigee. For example, a
90° argument of perigee and a high inclination will result in a much more northerly
perigee latitude than the same argument of perigee in a nearly equatorial orbit.
Hence, it is clear that we are challenged with deriving a very complicated, nonlinear
mapping in a high-dimension space.

Traditional curve fitting techniques - postulating the form of a mathematical

expression describing the relationship between one or more independent variables and




the orbital lifetime, and using a least squares method to adjust the expression’s
coefficients to minimize the error between the calculated and empirical data - may,
or may not, yield satisfactory results when applied to the current situation. It is more
likely that a solution may be obtained by training an artificial neural network (ANN)
to represent the empirical data.

Neural network research dates back to the late 1800’s, with some of the initial
work being done by Freud.? Prior to his psychoanalysis investigations, Freud
attempted to ".... represent psychical processes as quantitatively determinate states of
specifiable material particles ....".> The first mechanical implementation of an ANN
was a hydraulic device designed by Russell, in 1913.% This mechanism simulated the
action of nervous discharges, and was able to "learn" by experience.” In 1943,
McCulloch and Pitts derived the first mathematical model of an ANN.%%7 In 1949,
Hebb developed the first learning algorithm for ANNs.”*% Minsky and Edmonds
studied the work of McCulloch, Pitts, and Hebb, and are credited with creating the
first electronic implementation of an ANN.***" Theirs was a 40 neuron machine, with
synapses (i.e., connections between neurons) that adjusted their conductances accord-
ing to the success of performing a specified task.> The device successfully modeled
the behavior of a rat in a maze searching for food.>* In the four decades following
this 1951 invention, ANN research has experienced periods of great enthusiasm,
alternating with times of obscurity and even disfavor.® Simpson describes no less than
27 ANN models, which represent, as he says, only a fraction of those that have been,

and continue to be, developed.®
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Without question, feed-forward networks trained using error backpropagation®’
are currently the most widely applied neural network architecture. This popularity
revolves around the demonstrated ability of backpropagation networks to learn
complicated multidimensional mappings.® In fact, it has been said that the primary
application of this type of artificial neural network is any situation that requires the
acquisition of a complex nonlinear mapping.*

Hecht-Nielson* offers the following as a general, yet rigorous, definition of an
artificial neural system:

"A neural network is a parallel, distributed information processing
structure consisting of processing elements (which can possess a local
memory and carry out localized information processing operations)
interconnected together with unidirectional signal channels called
connections. Each processing element has a single output connection
which branches into as many collateral connections as desired (each
carrying the same signal - the processing element output signal). The
processing clement output signal can be of any mathematical type
desired. All of the processing that goes on within each processing
element must be completely local; i.e., it must depend only upon the
current value of the input signal arriving at the processing element via
impinging connections and upon values stored in the processing €le-
ment’s local memory."

Hecht-Nielson’s "processing elements” are also often referred to in the
literature as "neurons”, in recognition of the fact that artificial neural networks are
roughly based on the operating structure of the brain. Essentially, ANNs are adaptive
information processing systems that develop transformations or mappings between one
or more inputs and outputs. Instead of being given a step-by-step procedure for

carrying out the desired transformations, a network can be trained to generate its own
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internal rules governing the relationships, and to refine those rules until the transfor-
mations are accomplished with acceptable accuracy. This is one of the major benefits
of using ANNs to represent multidimensional data -- a priori knowledge of a
representative function’s form is not required.

Another strength of ANNG is their ability to "generalize” from specific training
data to new situations for which the data remains representative. In more familiar
terms, this is to say that properly sized and structured networks, after training,
provide a smooth nonlinear interpolation of the training data. By adjusting the
number of network layers and processing units, a designer can affect the generaliza-
tion abilities, training time, and final accuracy of a network. Once a network is
trained, an operator can disable the learning algorithm, and "freeze" the weights and
biases on the neuron connections. This will cause the network to stop adapting itself
to new data, and will provide a structure that is ready to process "real world" data.
Training can be reenabled at any time, to allow the network to adjust itself for newly
acquired data.

In recent years, multilayer neural networks have been increasingly popular for
applications in pattern recognition, classification, and function approximation. Neural
nets have been successfully used in many areas of activity, ranging from solving
scheduling optimization problems, to scoring applications for bank loans, to translating
written text to speech and vice versa.! The Defense Advanced Research Projects
Agency recently reported that ANN methods, still in their infancy, have matched or

exceeded the performance of established methods used for the classification of special
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sonar and seismic signals, and for automatic target recognition with forward looking
infrared sensors, despite the many years of R&D supporting the current technolo-
gies.”? The scientific community has placed less emphasis on studying the ability of
ANNS; to process floating point numbers, but Lapedes and Farber** have shown that
neural nets are capable of quite accurately representing real-valued functions.

This is not to suggest that ANNs are without their shortcomings. Although
there are many examples of the successful use of ANNS, there are also some impor-
tant issues that are currently solved in practice only by trial and error. Today, the
greatest difficulties are (1) choosing the number and type of training samples required
for successful learning, where learring is deemed to have been successful when the
system generalizes correctly, and (2) using the proper network structure to solve a
given problem. With too few neurons, the network may not be powerful enough for a
given learning task. With a large number of neurons, computation becomes expensive,
and the network may have the resources to actually "memorize” the training data.
The number of layers of neurons used is another structural variable that affects how
fast a network may be trained and how well it will generalize. It has recently been
suggested that networks with more layers, and fewer units in the early layers, may
generalize better than "shallow" networks with many units in each layer.* However,
narrow networks with many layers are known to be more difficult to train than broad
networks with one or two hidden layers.*

One of the best examples of the power and usefulness of a feed-forward

network composed of just three layers - input-hidden-output - is the "NETTALK"
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network, developed by Sejnowski and Rosenberg® in 1987. This network was trained,
using error backpropagation, to translate segments of English tex: into phonetic
notation for pronouncing the text. The phonetic notation was passed to an electronic
speech generator and verbalized. The three layer network had 203 input units, 80
units in the hidden layer, and 26 output units. The size of the hidden layer was
chosen after experimenting with as many as 120 units and as few as zero units. The
decision to use an 80 unit hidden layer was based on experiments which indicated that
80 units were sufficient for good performance, but not prohibitive in terms of training
time.

In studying the ability of neural nets to represent real-valucd functions,
Lapedes and Farber*’ found that (1) more than two hidden layers are never required,
and (2) the accuracy of the approximation is controlled by the number of neurons per
layer, not the number of layers.

Hence, relying on the experience and findings of Sejnowski, Rosenberg,
Lapedes, and Farber, the plan for this research project is to use feed-forward
networks having as few hidden layers, with as few units, as are required to represent
and interpolate the orbital lifetime data. This requires an iterative procedure of (1)
choosing a network structure, (2) attempting to train the network to represent the
training data with only acceptable errors, (3) testing the trained network’s general-
ization ability, and (4) returning to (1) if the results of (2) and/or (3) are not satisfac-

tory. The number of input units used will be dictated by the number of independent
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variables. There will be one output unit, which will provide the network’s approxima-
tion for the orbital lifetime.

A new training algorithm, designed specifically to train feed-forward networks
to represent any real-valued function, was derived in this work. This algorithm, used
in conjunction with a hybrid training approach, is shown to be invaluable in training
networks to represent and interpolate real-valued data which spans several orders of
magnitude.

Artificial neural networks are used in this research project to model the
relationships between various independent variables discussed earlier and the orbital
lifetime of tethered systems. One network provides the orbital lifetime of any free
tether, 10 to 125 km in length. A second network provides the lifetime of a spherical
satellite, of any mass and diameter up to 500 kg and 5 meters, respectively, trailing a
downward-deployed tether of any length between 50 and 100 km. This situation may
represent a parent satellite trailing a downward-deployed tether, perhaps after a
subsatellite has been released, or it may represent an upward-deployed subsatellite
trailing a tether, after it has been either cut, or broken free of, a parent vehicle.

The lifetimes produced by the "prediction networks" assume the center of mass
of a system of interest is initially in a 28.5 °inclination orbit, with argument of perigee
and true anomaly equal to zero. A third network produces a lifetime correction
factor, based on the system’s initial orbit inclination, argument of perigee and true

anomaly. The initial longitude of the orbit’s ascending node does not affect the
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calculated orbital lifetime, since the assumed shapes of the Earth and atmosphere are
symmetric about the polar axis.

A large number of randomly generated test cases are used to (1) demonstrate
the accuracy of the simplified dynamical model, (2) test the generalization abilities of
the trained networks, and (3) demonstrate the validity of the orbital lifetime prediction

technique.




MATHEMATICAL MODELS

The objective of any mathematical modeling effort is to represent, as simply
and efficiently as possible, one or more characteristics of a system of interest. In this
chapter, two models developed to numerically simulate the motion of uncontrolled
tethered satellite systems in freely-decaying Earth orbits are described. The difference
in the models is the way in which a system’s dynamics are represented.

The first, a "lumped-mass" or "multibody” model, discretizes a tether into
multiple, sequentially connected, elastic segments. This approach is a type of "finite
element” method. The nonlinear, ordinary, differential equations describing the
motion of the system are numerically integrated in time.

In the second model, an "element propagation” model, the system is discretized
into multiple nonelastic segments, and "propagation” or "variational" equations
describe the time rates of change of orbital elements due to two-body and non-two-
body (perturbing) forces. These equations are used to propagate the orbital elements
describing the system center of mass’ orbit.

The external forces acting on a system and the environment in which it moves
are identical in the two models. Hence the external forces model and the environ-

ment model are discussed separately.

16
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External Forces Model

There are many external forces which may affect the motion of a satellite in
Earth orbit. In 1666, Isaac Newton conceived the law of universal gravitation, and
used it to show that a satellite moving under the influence of only a more massive,
spherical, central body would travel precisely in an elliptical path.** In this
unperturbed "two-body" scenario, the orbit of a satellite would be an ellipse of
constant size and shape, in a plane fixed relative to the "fixed" stars.

In reality, a two-body elliptical orbit is perturbed by the effects of a variety of
forces. In general, forces due to the following causes will affect the orbit:

(a) non-sphericity (oblateness) of the Earth’s gravitational field,
(b) Earth’s atmosphere (ic., acrodynamic forces),

(c) gravitational attraction of the Sun, Moon and planets,

(d) solar radiation,

(e) other sources - magnetic fields, Earth-reflected solar
radiation, ocean and land mass tides, charged and
uncharged particle impact, and the effects of
precession and nutation of the Earth’s spin axis.

The perturbations in (€) would need to be taken into account in analyzing orbits with
observations of very high accuracy.* We will ignore their effects. The magnitude of

the acceleration resulting from each of the sources listed in (a) through (d) are shown
in Table 1. The values were calculated for a 500 kg, 5 meter spherical satellite at the
northernmost point of a 500 km (altitude) circular orbit, inclined at 28.5 degrees.

Except for the Earth oblateness and aerodynamics calculations, orbit inclinations and
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phase angle differences were ignored. That is, the minimum possible distances
between the satellite and the other bodies were used, assuming the bodies were

located in coplanar orbits with no phase angle difference.

Table 1. Acceleration magnitudes in 500 km Earth orbit.

Source Acceleration, m/sec? Source Acceleration, m/sec?
Spherical Earth 8.43 Venus 2.24x 1077
Earth oblateness 1.05 x 1072 Mars 1.45x 1078
Aerodynamic drag 234x10°¢ Jupiter 3.66 x 1077
Solar radiation 2.04x 1077 Saturn 2.66x107®
Sun (gravity only) 6.13x1073 Uranus 8.72x 1071
Moon 3.72x10°8 Neptune 3.66x 107"
Mercury 3.74x107° Pluto 198 x 107!

Hence we see that the accelerations due to the Sun, Moon, and planets are
significantly less than those imposed by the Earth and it’s oblateness. Although the
acceleration due to aerodynamic drag, at the reference point, is less than that of the
Moon or Sun, we note that drag is a dissipative force, which continually opposes the
satellite’s motion. Conversely, the gravitational forces imposed by the Sun and Moon
are conservative, and their effects will be periodic, varying with the satellite’s position
in orbit and the orbit’s position in space.

As discussed in the Introduction, the maximum system center of mass altitude

to be included in this project is S00 km. As shown in Figure 1, this choice will limit
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the magnitude of the Sun’s acceleration to a level below approximately 60 percent of
the acceleration due to the Earth’s oblateness. Hence, only the perturbations due to

aerodynamic drag and the Earth’s oblateness are included in this work.
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Figure 1. Ratio of perturbing acceierations to oblateness acceleration.

Gravitational Forces. Gravitational forces acting on a tether system are calculated
assuming the Earth is symmetric about its polar axis. The external gravitational

potential, ¢, of an oblate, spheroidal Earth may be written as

k
= IR , ()
¢ = ;f -3, [_R‘f] P, (sinL)

E

where u; is the Earth’s gravitational parameter, R; is the Earth’s equatorial radius, R
and L are the geocentric altitude and latitude of interest, respectively, the J, are zonal

harmonics of order zero, and the P, are Legendre polynomials. Empirically
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determined values for the Earth’s first seven zonal harmonics are®%*!
J, = 1082.63 x 107 J, = ~2.54 x 107 J, = —1.61 x 10~
J, = —0.15 x 107 J, =059 x 107 J, = —0.44 x 10"

Since J, is over 400 times the magnitude of any of the other coefficients, and because
(Rg /R)* becomes small as k increases, we may neglect all harmonic coefficients
except J,. After expanding the Legendre polynomial (P,), we may write the potential

of mass i in a multimass system as

2
E RE s 2 2
¢, = % 1 -JZ[E] [%(sm L,.) - %} @)

i

The acceleration due to gravity acting on mass i is the gradient of the potential

function, and the force due to gravity, Em., is then

E?W.- = m, Ve, (3)

Aerodynamic Forces. Aerodynamic forces are calculated using the expression

- _1
E_ =-1pl¥, 1G4V, O

where p is the atmospheric mass density, V' , sometimes referred to as the "cross-
P P ~rel

flow" velocity, is the component of velocity relative to the rotating atmosphere that is
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perpendicular to the applicable tether segment, C, is a drag coefficient, and A4 is a
reference area.

Atmospheric mass density is modeled using a derived curve fit of the global
and temporal average atmosphere defined by the 1986 COSPAR International
Reference Atmosphere. The atmosphere model is discussed later in this Chapter.

The numerical value for the drag coefficient is determined by: (a) the shape
being modeled, and (b) the flow regime the body is encountering. In this work the
tether end-bodies, the "parent” and/or "sub” satellites, are modeled as spheres, and
tether segments are modeled as right circular cylinders. The reference area, A4, is the
circular cross-sectional area for the end-bodies, and the product of length and
diameter for the tether segments.

As explained by Regan®, there are at least five distinguishable flow regimes a
spacecraft encounters as it "enters" an atmosphere. In order of decreasing altitude

they are:
(a) Free molecular flow
(b) Near free molecular flow
(c) Transition flow
(d) Viscous merged layer flow

(e) Continuum flow
The similarity parameter that identifies the current flow regime is the Knudsen
number, Kn. The Knudsen number is defined as the ratio of the molecular mean free
path, A, to a characteristic body dimension, d, so that Kn = A4 /d. A very small Kn
indicates continuum flow conditions, while a very large Kn indicates free molecular

flow conditions.
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The molecular mean free path is the average distance a molecule travels
between collisions with any other molecule. This distance is equal to the ratio of the
mean molecular speed and the mean collision frequency, and may be calculated using®

R.

A(meters) = | ——
V2 ma?N,

[Z] - 23325083 x 10° [.17;] (5)

where R’ is the universal gas constant, o is the effective mean collision diameter, N, is
Avogadro’s number, T is the ambient temperature in degrees Kelvin, and P is the
ambient pressure in Pascals. Hence, given the temperature and pressure at an
altitude of interest, the mean free path can be calculated, the Knudsen number
formed, and the local flow regime identified.

In continuum flow, Newtonian impact theory can be used to derive,
analytically, the drag coefficients for blunt bodies moving at hypersonic speeds.® The
Newtonian theory assumes the normal momentum of the particles impacting a body’s
surface is completely absorbed, while the tangential component is preserved. Hence
the aerodynamic loads result from "impact pressure” alone.

In the free molecular fiow regime, molecules reflected or emitted from a body’s
surface are assumed to not collide with other molecules. As Harvey® explains, this
simplifies the solution of the Boltzmann equation, which yields expressions for the
normal and tangential momentum flux to an immersed body’s surface. In this type of
flow, the gas-surface interaction and surface temperature are the most significant
parameters, and there are both pressure and shear stress contributions to the

aerodynamic loads and coefficients.® For example, Koppenwallner and Legge have
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shown that shear stress accounts for approximately 25% of the total drag coefficient
of uncooled circular cylinders in hypersonic free molecular flow.>” They also found
that the drag coefficient of cooled cylinders in this type of flow is approximately 20%
less than that of uncooled cylinders.*

Theoretical results which cover the flow regimes between continuum and free
molecular flow do not exist.> Consequently, empirically derived bridging functions,
which provide force coefficients as a function of Knudsen number, are used to link the
two bounding regimes.®

Empirical Cp, data obtained by Koppenwallner® and Legge® shows that
uncooled spheres and cylinders experience free molecular flow conditions at Knudsen
numbers above 10. Continuum flow conditions occur for cylinders at Knudsen
numbers below approximately 0.01, and for spheres at Knudsen numbers below
approximately 0.001. For this data, Knudsen numbers were calculated by dividing the
free stream mean free path by the sphere or cylinder diameter. The cylinder drag
coefficients ranged from 2.80 in free molecular flow to 1.24 in continuum flow. The
sphere drag coefficients ranged from 0.92 in continuum flow to 2.70 in free molecular
flow. Curve fits of Koppenwallner and Legge’s data are used to model the drag
coefficient variations for spheres and cylinders. The derived equations are presented
in Appendix B. Figures 2 and 3 show the resulting altitude dependence of the drag
coefficients when the C,, versus Kn models are used in conjunction with the COSPAR

atmosphere model.
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Figure 2. Altitude variation of 2 mm cylinder drag coefficient.
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Figure 3. Altitude variation of 3 m sphere drag coefficient.
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Environment Model

Atmosphere Model. The atmosphere mass density and molecular mean free path are
modeled using the 1986 COSPAR International Reference Atmosphere.*** This is an
empirical model, based on temperature and composition measurements made by a
variety of satellites, and by incoherent scatter radar.** This Reference Atmosphere,
published in 1990, includes algorithms for modeling atmosphere properties for any
level of solar and magnetic activity, at any latitude, longitude, year, month, and time
of day of interest. A global and temporal average atmosphere, assuming magnetically
quiet conditions and an average solar flux, is also defined. This "grand mean"
definition was used in this research project. As recommended by The Committee on
Space Research, Part II of the COSPAR model is used for altitudes up to 120 km,
and Part I is used for altitudes above 120 km.®

Curve fits for mass density and mean free path, as functions of altitude, were
derived from the COSPAR grand mean data. The curvefit equations are presented in
Appendix A. As shown in Figure 4, the equations for mass density are accurate to
within = 2% between the altitudes of 50 and 500 kilometers. As shown in Appendix

A, the curvefit mean free path equations are accurate to within * 3%.
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Figure 4. Atmosphere mass density curvefit error.

Altitude Calculation. The altitude of a mass of interest is calculated by determining
the perpendicular distance between the mass and the Earth’s surface. Because the
Earth is not a perfect sphere, this calculation is not a simple matter of differencing the
mass’ geocentric altitude and the Earth’s equatorial radius. As shown in Figure 5, the
"geodetic altitude" will equal the difference in R; and the Earth’s equatorial radius only

at the equator. Hence, Gersten’s equation® is used to calculate the geodetic altitude,

H, where

H =R -a;+ %aEeEzsinzd:[(l + e) + sin2¢[‘_11e§ - e]] (6)

In this equation, a; and eg are the Earth’s equatorial radius and eccentricity, respec-

tively, R; is the mass’ geocentric altitude, and ¢ is the mass’ geocentric latitude. The
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factor € is aze;’/ R, . The numerical values for the constants are®® a, = 6378.137

km, and e; = 0.08181922.
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Figure 5. Altitude above an oblate Earth.

Atmosphere Rotation. Following the approach used in many models, the atmosphere
is assumed to be rotating, at all altitudes, at the same rate as the solid Earth.® Hence
the velocity of the atmosphere at any location is calculated from V= o X R,
where ¢ is the Earth’s angular velocity. The combination of the altitude calculation
method presented earlier, and the atmosphere rotation model described here, means

the model atmosphere has (e same shape as an ellipsoidal Earth, and rotates with it.

Multibody Model

As described by Kane™, the motions of a spacecraft may be analyzed "... by
considering a set of particles placed at the joints of the structure, each particle having

a mass equal to one-half the sum of the masses of all truss members meeting at the
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joint and the particles being connected to each other with massless springs whose
stiffness reflect the elastic properties of the truss members." This is the so-called
"lumped-mass" approach to modeling a dynamical system. The dynamical model
developed here consists of a non-conductive, extensible, lumped-mass tether, connect-

ing end-bodies modeled as spheres.

System Description. Using the lumped-mass technique, the mass of a tether can be

represented mathematically by dividing its length into n equal length segments, and
assuming the mass of each segment is halved into point masses at the segment’s ends.
Hence, the mass at each segment intersection, referred to here as a "bead", equals the
mass of one tether segment. The end-masses, M, and m,, are equal to the "parent"
satellite mass plus one-half of one bead mass, and the "subsatellite” mass plus one-half
of one bead mass, respectively.

The mathematical description of the system’s dynamics is designed to enhance,
as much as possible, the accuracy of results obtained via numerical integration. As
shown in Figure 6, the inertial position vector to the parent satellite (R,) is referenced
to the origin of the Geocentric Equatorial Coordinate (GEC) system. It is represent-
ed in spherical coordinates (R, , 4, ,9,) to reduce the magnitude change occurring in
each variable during numerical integration. The relative position vectors of the
remaining masses define the position of each mass relative to its neighbors, in
(Cartesian) GEC coordinates. This relative representation reduces the magnitude of
the variables involved, thus reducing the effect of roundoff errors on the numerical

solution. It also facilitates straightforward specification of system initial conditions.
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Figure 6. Tethered system lumped-mass model.

System dynamics are described by the state equation

X=F®

where the state vector for the system is

. : [ . . . . , 17
X = [Ro Ao by Ry Ay &g X, yy 20 Xy Yy 2y X, y, 2, X, Y, z"]

The inertial position of the parent satellite is

R, = [R,cos(dy) cos(A) ]I + [R,cos(y)sin(Ag) )T + [R,sin(dy) |K

@

)

and the parent’s inertial velocity and acceleration vectors are obtained by successively

differentiating this vector with respect to time, holding the unit vectors I, J,and K

constant. The inertial position of mass i is

R=R+%1

j=

and the position of mass i relative to mass i—1 is

(10)
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(11)
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The inertial velocity and acceleration of mass i are calculated by taking successive time
derivatives of Eq. (10). Since the relative position vectors r; are written in the inertial
frame, there are no vector cross products with which to contend in the kinematic
velocity and acceleration expressions for R;.. This is a distinct advantage over writing

descriptions in a rotating frame located at some point in the system.

Equations of Motion. To numerically integrate the state equations (Eq. (7)), we
require expressions for the time derivatives of the velocity components of the state
vector (Eq. (8)). The acceleration of mass i relative to mass i—1, obtained by

differentiating and rearranging Eq. (10), is

-
|
—

< _ bl - _ .. 12
r=R -R 2.5 (12)
j=1
Using Newton’s Second Law to substitute forces and masses for unknown
accelerations, Eq. (12) becomes
F i-1
. XE XE & (13)
- m, m, j=1 K

where F; and F, are forces acting on masses i and 0, respectively. This equation
describes the motion of mass i relative to mass i—1, and is used to update the state
vector’s relative velocity terms incrementally in time. The forces included in the
summations are aerodynamic forces, forces due to gravity, and tension forces occur-

ring in the elastic connections with neighboring beads.
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Expressions for R, A, and ¢, are most easily derived in a rotating coordinate

frame attached to M,, the parent mass. As shown in Figure 7, this coordinate system

is defined with mutually orthogonal unit vectors in the _IE , i and é directions. The

system’s angular velocity, w, is

where
K =sing,e + cosqbog‘b

so that the frame’s angular velocity, written in rotating coordinates, is

o = l’o Sind’oéR - d’o_é.l + A cos¢o§¢

ﬁb\!ﬁb)

J

Figure 7. Rotating coordinate frame.
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(15)

(16)
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The time rate of change of the angular velocity is

>0

- é,¢

9.=AO 2

When written completely in rotating frame components, Eq. (17) becomes

@ = (xosind:o + iocf)ocosdao)éR - ‘?’oél + (xocosdzo - )'.o$osin¢o)§¢

The parent’s inertial position, written in the rotating frame, is
B—o =R, éR
The parent’s inertial velocity is
R, = R, + Ry(axg,)
= R,€, + Ryh,cosd ¢ + R, J’oi

and its inertial acceleration is

R =R, + 2R, (Q‘XER) * RO(QXER * Qx(wxéR))

After expanding the vector products and grouping like terms, Eq. (21) becomes

ae . s 2 ¢ 2\
R = (Ro - Ry A, cos’d, - Ry &, )ER
+ (ZRO i,cosd, - 2R A, é,sing, + R, A, coscbo)éJL

+ (ZRO J’o + Ro"b.o + R, ioz sing, cos¢o)§¢
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(18)

(19)

(20)

(21)

(22)

This is the parent’s inertial acceleration, expressed in the rotating coordinate system.

Using Newton’s Second Law, we may relate this expression to the sum of the forces

acting on M), so that




ip> (23)

4™

The forces included in the summation are the aerodynamic forces acting on the parent
satellite and one-half of the immediately adjacent tether segment, the force due to
gravity acting on mass M,, and the tension force occurring in the elastic connection
with the first bead. Using Eqs. (22) and (23), we may now solve explicitly for the

desired derivatives:

a» FOR 22 2 «2 (24)
R, = A + R, A cos°d, + R &,
0
. F R, A .
Ay = 2 -2707 L2 d tand, (25)
M R, cosd, R,
. Fo R,
by = —2 - Ajsing,cosgy - 22 (26)

R,M, R,
In these equations, the subscripts on F), indicate the applicable force vector compo-

nent.

Aerodynamic Forces. Aerodynamic forces are calculated as described earlier.

Forces applied to the end-masses are the resultants of both the drag of the end-body
and the drag on one-half of the immediately adjacent tether segment. Forces applied
to the tether beads are the resultants of drag forces acting on the tether ¥z segments

immediately "above" and "below" the bead. As shown in Figure 8, the aerodynamic
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forces will have components along both the drag and lift directions (ie., parallel and

perpendicular to V) for any tether segment that is not perpendicular to V,,, .

Figure 8. Aerodynamic forces geometry.

The reference cross-sectional area for each segment (length x diameter) will
vary as it’s length changes, due to elasticity effects. Poisson’s ratio, v, is the ratio of
the strain in the lateral direction to the strain in the axial direction.” Using this
material property, the reduced diameter, d, of a stretched segment is calculated from

) vdy(ly - 1)
l

0

+d, 27)

where d, is the unstrained (original) segment diameter, and /, and [ are the original
and stretched segment lengths, respectively. The diameter is assumed to be equal to

it’s original value for segments that are equal to or less than their unstretched lengths.
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Tension Forces. Tension forces are calculated by modeling each tether segment as a
massless, linearly elastic spring. The equivalent spring constant, k,,, for the entire
tether length is

k= EA _End (28)

“4 L 4L

where E is the tether modulus of elasticity, A is the (circular) tether cross-sectional
area, d is the tether diameter, and L is the total tether length. The equivalent spring
constant for each tether segment is nk,,, where n is the total number of tether
segments being modeled. The total tension force acting on mass i is determined by
the elongation of the springs connecting the mass to its neighbors. The springs are
assumed to exert forces in tension, but not in compression. The tension force on mass

i is calculated from

F_=nk;: [(stretch,.d)i_+1 - (streich )T, ] (29)

i
where fm is a unit vector from mass i to mass i+1, and f, is a unit vector from mass
i—1 to mass i. The scalar "stretch" terms are the elongations of the corresponding
tether segments. These terms are always greater than or equal to zero. If the current
distance between mass i and one of its neighbors is less than the original segment
length, the stretch term is set equal to zero, and there is no spring force applied along

that connection.

Numerical Integration. The state equations are numerically integrated using a Runge-

Kutta-Gil fourth-order method.”? Egs. (13), (24), (25) and (26) provide the means by
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which to calculate the time derivatives of the state vector’s velocity terms at each
integration time step. Calculations at each time step begin with the parent mass and

proceed sequentially to mass n, the subsatellite.

Orbital Element Propagation Model

The model described in the previous section involves direct numerical integra-
tion of the equations of motion, including all perturbing forces of interest. In the
vernacular of perturbation techniques, it is classified as a "special” perturbation
technique, and is sometimes referred to as Cowell’s Method.”

Unfortunately, the method’s simplicity is somewhat offset by the time required
to simulate a tethered system’s orbital decay. A similar, but more efficient technique,
which is often used for single-mass satellite orbit simulations, is the "variation of
parameters” method. John Bernoulli first used this method in 1697 to solve a linear,
first-order, non-homogenous differential equation with non-constant coefficients.”
Leonhard Euler received prizes from the French Academy in 1748 and 1752 for his
use of the method to study the perturbations of Jupiter and Saturn, and J. L.
Lagrange made further advances on the subject in 1766.” In 1782, Lagrange, for the
first time, completely developed the method in a memoir on the perturbations of

comets moving in elliptical orbits.” As a result, orbital element variational equations

derived using this method are usually referred to as “Lagrange’s Planetary Equations”.

The objective of the method is to describe how a selected set of orbital

elements varies with time due to perturbations - non-two body forces acting on the
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system. This is done by deriving analytical expressions for the time rates of change of
the elements in terms of the perturbations of interest. The expressions are then
numerically integrated to find the values of the elements at future times.

In this section, we will summarize the derivation of Lagrange’s Planetary
Equations, discuss the derivation of, and present, a set of non-singular propagation
equations, and, finally, describe the unique perturbations used in the equations to
propagate the orbital elements of a tethered system’s center of mass. Many of the
equations presented are available in various published documents, and are included
here only for completeness. However, the application of these techniques to a

tethered system’s orbital evolution is unique to this work.

Lagrange’s Planetary Equations. "¢ The orbital equation of motion for a perturbed

small satellite moving under the influence of a more massive central body is

T
aR (30)

d’r
+ —
or

a peT

i

where r is the satellite’s position relative to the central body, p is the body’s
gravitational parameter (GM), and R is a potential or "disturbing” function. This
formulation requires that the perturbing forces be conservative, neither adding energy
nor deleting it from the system, which is an obvious limitation. Although Lagrange
derived the variational equations with this restriction, the problem was revisited by
Gauss in 1814. He modified the equations to account for an arbitrary perturbing

force. In this case, the equation of motion is




Q
<3

-a, (31)

2
vl
+
e
i~

where g, is the disturbing acceleration. This second-order equation may be written as

a system of two first-order equations, with

dr dVv 1
—_ = and — +-r=a 32
da ~— da - ™ (32)
where V is the satellite’s velocity relative to the central body. If there were no
disturbing acceleration, the solution to these equations would be
dr Or{a,t
r= r(a,t) and V=_-= r(a ) (33)
-t - dt ot

where a is a six-dimensional vector containing the (constant) orbital elements. This is
the Keplerian, two-body situation.

The objective of Lagrange’s derivation is to reformulate Egs. (32) into equa-

d
tions for .d_? while maintaining the form and meaning of Egs. (33). In so doing, we

will be able to compute the instantaneous position and velocity of the perturbed
satellite using the well-known Keplerian formulae.

In perturbed motion a is not constant, and the total time derivative of r is

dr _ or(a,t) . or(a,t) da

= = (34)
dt ot da dt
Comparing this equation to the second of Eqs. (33), we see that we must require
O da (35)

Wd




39

Imposing this "condition of osculation” and differentiating oncc moie, we obtain

dr dv oV oVda

— + _—_= (36)
dt dt ot Qdadt
Substituting this expression into the equation of motion yields
o, u, K, (37)
aF P dad
and we note that, by design,
or
—+Er-0 (38)
oz r
Hence, we must also require
Edz _, (39)
da dt ™

Egs. (35) and (39) are the six scalar differential equations we seek. They are
equivalent to the original equation of motion, and must be satisfied by the vector of
perturbed orbital elements, a(t). The equations may now be combined into a more
compact form.

The 6x6 skew-symmetric Lagrange matrix, L, is formed by

T
ov| eor (40)

z| da

T
v
32

or

%a

and the matrix equation combining Eqgs. (35) and (39) is

da

t

e~

3a

T
65} a (41)

—_—e e d
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The elements of L, called the "Lagrangian brackets", arz calculated from

or dV or oV

[L.,L.] = _~ = —_ﬁ-_— (42)
_— da, aaj aa,. Oa,

where the i, j bracket is the matrix elemel.t in row i, column j. Because of the skew-

symmetry of L, there are only 15 distinct brackets to evaluate. Only six of these are

non-zero. After the brackets are evaluated, and the right hand side of Eq. (41) is

expanded, the elements of the vector ‘_2‘% can be determined by algebraic elimination.

Lagrange’s Planetary Equations, in Gauss’ form, are listed below. The
disturbing acceleration must be expressed in an osculating coordinate system. This

dextral, orthogonal, Cartesian system has unit vectors in the radial, transverse, and

(orbit) normal directions. The unit vector 3_’ points in the direction of the satellite

from the central body’s center, éh is perpendicular to the orbit plane, and év lies in

the orbit plane, completing the unit vector triad, making an angle less than 90° with
the satellite’s velocity vector. The orbital elements used here are a classical set: a,
the semi-major axis, e, the eccentricity, i, the inclination, ), the longitude of the
ascending node, @, the argument of perigee, and v, the true anomaly. In these
equations, the subscripts on a, indicate the applicable component of the disturbing
acceleration. These terms should not be confused with a, the symbol for the length of
the semi-major axis. The "orbit parameter" (a(1-€%)) is P, h is the satellite’s specific
(orbital) angular momentum, and U is the argument of latitude, which is defined as

the sum of the argument of perigee and the true anomaly.




% = ..ZZ_Z(esinvad’ + .’;_adu] (43)

%.? = %{psinv a, + [(p +r)cosv + re]adu} (44)

:17:' - rcc})zsUadu (45)

o -, (46)

%? = %[-pcosv a, * p + r)sinvadu] - %ﬂadh 47)
% =r£2+eih[pcosvad’—(p +r)sinvadu] (48)

Equinoctial Elements and Non-Singular Propagation Equations. Unfortunately, Eqs.

(46) - (48), which model the time rates of change of §), , and v, contain terms
including e and/or sin i in their denominators. Consequently, singularities occur when
i and/or e are zero, and the calculated rates of change of ), w, and v for orbits of low
inclination and/or small eccentricity will be large despite the fact that the disturbing
accelerations may be small.

To avoid this problem, the classical elements may be combined in a way that
eliminates the singularities. As shown by Battin,” a more reliable set of propagation

equations results if five new elements are defined:
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P, = esin® P, = e cosw

Q, = tan%sinﬂ Q, = tan%cosﬂ

l 0w +M

In this new set of elements, @, the longitude of perigee, is & + ®w; M is the mean

anomaly; and ! is the mean longitude. The semi-major axis, a, is the sixth element in
the set. These elements are non-singular for all orbits except those with i = 180°.
Using the mean longitude to update the satellite’s position requires that

Kepler’s equation be solved after each time step. This requirement can be eliminated

by propagating the value for the true longilude, L = @ + v, rather than /, the mean

longitude. Combining the expressions for d—ﬂ, d_(.)’ and ﬁ, we obtain
dt * dt dt
dL _ h _r . i
2 =2+ _sinUtan_a 49
t rr h 2 % “49)

Substituting equinoctial elements, this expression is

dL y2(1 + PsinL + chosL)2 h Q,sinL - Q cosL
= +

dL h _ a, (50
dt h3 ul+PsinLl + P,cosL *
The remaining propagation equations are
da _ 2a* . p. ]
i (PsinL - PcosL)a, + ;aduJ (51)
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d%:l = %{-I_: cosLa, + [Pl + [1 + g]sinL a,,~ P,(Q,cosL - stinL)adh} (32)
‘%1;3 = %{g sinL a, + [P2 + [1 + g]cosL}adU + PI(QlcosL - sti“L)aa,,} (53)
‘%Q;l = 7;1.(1 + le + Qg)sinLaa,‘l (54)
‘% = .2%(1 + 0} + Q)cosLa, (55)
where

h = nab; beaft -P2-P2>  n= |E
a
h? r= p
p=——’ =
u 1 + P;sinL + PycosL

Disturbing Acceleration. The propagation equations listed above are used to update

the orbital elements of the tethered system’s center of mass. Perturbations of the
motion arise from three sources:
(a) Aerodynamic forces on the tether and end-bodies

(b) Gravitational forces due to Earth oblateness

(c) Gravitational forces due to the physical distribution of the
system’s mass.

Thus, the perturbing force, F,, may be calculated by differencing the "actual”

aerodynamic and gravitational forces acting on each mass in the lumped-mass system
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with the two-body gravitational force that would result if all the system’s mass was

actually concentrated at the center of mass location. In Eq. (56), F and F  are
gav;

aero;

the gravitational and aerodynamic forces acting on mass i. They are calculated as

described in the Multibody Model section of this Chapter.

F=E(F +F \-F (56)

—p S Ty e —pav_,

The two-body gravitational force acting on the system center of mass, F  , is

cm

calculated from

F . =M%, (57)
where
g =
d)m = 7 and Mm = E M (58)
o i=0

Finally, the disturbing acceleration, a,, is determined by dividing F, by the total system
mass, M,,.

It is important to note that only the orbital elements for the system’s center of
mass are propagated forward in time. Hence, this approach will not yield current
position and velocity information for all system constituents, which makes calculation
of the "actual" aerodynamic and gravitational forces impossible. As discussed in the
Introduction, we are interested in studying the orbital evolution of tethered systems
released when they are aligned along the local vertical, and orbiting as a rigid rod. In
an earlier study, Bergamaschi and Morana® found that the in-plane libration angle

(i.e., the angle between a straight line approximation for the tether and the local
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vertical) of a freely-decaying tether remained very small after it was released from
these initial conditions. Hence, for this part of the analysis, we will assume the tether
is inextensible and remains aligned along the local vertical during its entire lifetime.
Assuming the tether is inextensible means the position of each mass in the
system, relative to the system center of mass, is known for all time. Hence the inertial

position of mass i is

R =R ~+r Osi<n (59)
-3 ~cm

where R, is the inertial position of the system’s center of mass, and r. is the

(3

position of mass i relative to the system’s center of mass. The inertial velocity of mass

i is calculated from

’—é,-”—éa,.*f.,,,.’ 0<i<n (60)
where
r,=exr , 0O0sisn (61)

In Eq. (61), the fact that the system is assumed to orbit as a rigid rod is exploited. In
this situation there is no relative velocity between any of the masses and the system’s

center of mass. Hence the "apparent” jnertial relative velocity is due only to the

inertial motion of a reference frame attached to the system. Correspondingly,  is the
rotation rate of an osculating coordinate system located at the system’s center of

mass.
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Element Propagation and Coordinate Transformation. An Euler numerical integra-

tion technique is used to update the orbital elements, as shown in Eq. (62), where g

represents any one of the equinoctial elements.
= dx 62
x(e +8t) = x(8) + n ot (62)

Figure 9 shows the physical relationship between the equinoctial (z, g ),

osculating (i’ éu’ E,,) and GEC (Xgzc, Ygec, Zggo) coordinate systems. The funda-

mental plane of the equinoctial coordinate system coincides with the orbit plane.

Zage

Figure 9. Equinoctial, Osculating, and GEC coordinate systems.
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Consequently, the position of the center of mass can be written as

R, =(rcosL)f +(rsinL)g (63)

where r is calculated using the current equinoctial elements, as shown on page 43

(following Eq. (55)). The inertial velocity of the center of mass is

R, =(fcosL - rLLsinL)} + (fsinL + rLL cosL)g (64)

After substituting equinoctial element expressions for rL, 7, and L, we have®!

R - g[(-pl - sinL)] + (P, + cosL)g] (65)

The center of mass’ inertial position and velocity vectors may be expressed in

GEC coordinates by performing the following transformations:

(a) a positive rotation about w through the angle Q,

(b) a negative rotation about n (ascending node vector) through the
inclination angle, i, and

(c) a negative rotation about K (Zggc) through the angle Q.

Hence, any vector expressed in equinoctial coordinates may be transformed into GEC

coordinates with the operation

cos{) -sinQ 0|1 0 0 ||cos) sinQ2 0
B___ =(sinQ cosQ 0f[0 cosi -sini||-sinQ cosQ 0 Qfgw
0 0 1)|0 sini cosi|| O 0 1

(66)

-GEC




Combining the rotation matrices and writing the result in terms of equinoctial

elements yields®?

1

T L ghQ
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1-01+Q5 200,
20,0, 1+07-0

| "2Q1 2Qz

20,
=20,

1-0-03)

—few

(67)
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ARTIFICIAL NEURAL NETWORKS

As discussed in the Introduction, artificial neural networks (ANNs) are used in
this research project to represent the mapping between several independent variables
and the orbital lifetimes of tethered systems. After an overview and introduction to
feed-forward network concepts and architecture, we will describe the "standard" error
backpropagation training algorithm, derive a training algorithm specifically designed to
train feed-forward networks to represent widely-spread real-valued data, demonstrate

the new algorithm’s performance, and describe and test a hybrid training approach.

Overview and Introduction

Basic Concepts. Artificial neural networks are not programmed; rather, they "learn”
by example. During supervised learning, or "training", a network is presented with a
series of input vectors together with corresponding desired output vectors. In
response to differences between the network’s output(s) and the desired output(s), the
network adjusts the values of its internal parameters. Training continues until the
network produces the correct output(s) for each input vector in the training set. This
process mirrors an important task of the central nervous system: the ability to learn

reactions and useful behaviors that permit survival in an often hostile environment.

49
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Networks that provide an optimal reaction or answer to an external stimulus are
sometimes referred to as "cybernetic" networks.®

The most-studied and popular class of cybernetic networks are the so-called
"feed-forward, layered" neural networks. In these networks, information flows along a
series of one-way connections between several distinct layers of neurons. At one end
is the input layer, which receives external "stimuli”, and at the other end is an output
layer, which produces, or causes, a desired "reaction”. There may be one or more
layers of neurons between the input and output layers. These are called "hidden"
layers, because they have no direct interface with the "outside world". Rather, they
receive inputs from the preceding layer and pass their outputs to the following layer.
Figure 10 shows, schematically, the flow of information from inputs to outputs in a
network with a single hidden layer. Note that there are no connections between
neurons in the same layer, and each layer receives inputs only from the preceding
layer.

Each neuron in a network applies a "transfer function” to its input, yielding a
result that is passed to each neuron in the following layer. Each connection between
neurons has an associated "weight", and each neuron in the hidden and output layers
has an associated "bias". These variables are adjusted during the training process, in a
manner designed to minimize the error between the desired and actual output
value(s). In the following sections, we define a standard terminology, discuss the

transfer functions used in this research project, and present a detailed description of
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the network structure used in modeling the relationship between the various

independent variables and the orbital lifetime of tethered systems.

Hidden

Figure 10. Feed-forward network architecture.

Terminology. In this work, input, to any neuron in a network, will be represented by
X, , where a is the neuron’s "number" in its layer - 1,2,3,4, etc. Output from the
neuron is denoted by Y,. The weight on a connection between neurons is denoted by
Wg,, where B is the number of the "transmitting” neuron in the preceding layer, and
a is the number of the "receiving" neuron. The bias on hidden and output neurons is
denoted by v, , where, as before, a indicates the neuron’s number in its layer. The
transfer function applied by a neuron to its input is represented by G(X,).

When writing mathematical formulae describing a network’s operation, we use

"
i

the subscript "i" to refer to the input layer, the subscript "j" to reference the hidden
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layer, and the subscript "k" to denote the output layer. (If more than one hidden layer
is involved we will use numerical subscripts on "j" to indicate the layer’s number.)
Hence, for example, the values of the input vector are X, the outputs from the input

layer are Y, the inputs to the (first) hidden layer are X}, and the hidden layer’s outputs

are Y;

Transfer Functions. As shown in Figure 11, each neuron in a hidden layer sums the
weighted inputs arriving from neurons in the preceding layer, subtracts a bias value,
applies a transfer function to the result, and passes the final result, along weighted
connections, to each neuron in the next layer. Neurons in the input layer merely
apply a tra:."er function to a single (external) input, and send the result along
weighted connections to the first hidden layer. Neurons in the output layer operate as

shown in Figure 11, but provide only a single result, Y, to the "outside world".

Figure 11. Hidden layer neuron operation.
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The transfer function may perform any desired mathematical operation on a
neuron’s input. Possible candidates include linear, linear-threshold, sigmoid,
trigonometric, and even Gaussian functions. The fundamental requirement for
employing the error backpropagation training algorithm is that the function and its
derivative be monotonic and continuous. Because there are certain mappings which
are not "linear separable”, preference is usually given to using nonlinear transfer

functions. The most commonly used function is the sigmoidal "logistic function",

Y = (68)

This function is one in which the output varies smoothly with the input. The

function’s derivative is also smooth and continuous. The derivative is

g e -[ ! ][ e” ]=Y(1-Y) (69)

= (1 . e_X)z - 1 + e-X 1 + e'X

Figure 12 shows that the function’s output varies in magnitude between zero and one,
the so-called "saturation levels". The function’s slope is largest when X is between —1
and 1.

Applying a weight, W, to the function’s result has the effect shown in
Figure 13. A positive weight, greater than unity, "stretches” the function along the Y
axis, increasing its slope and maximum magnitude. A positive weight, less than unity,
compresses the function along Y, reducing its slope and maximum magnitude.

Negative weights produce the mirror image of these results about the X axis. The
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Figure 13. The effect of multiplicative weights on the logistic function.
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characteristics illustrated in Figure 13 demonstrate the effect of modifying a neuron’s
output with a multiplicative weight. Hence, we see that by adjusting the connection
weights, during training, a network can control the saturation levels and response
characteristics of its many neurons.

As shown in Figure 14, subtracting a bias, v, from the sigmoid’s argument
translates the result along the X axis, without altering the function’s slope or
magnitude. Positive biases shift the result to the left, and negative biases shift it to
the right. We observe that the bias actually serves as somewhat of a “threshold"
value, determining the "activation level" at which a neuron’s output will begin to

transition from zero to the upper saturation level.

15

Figure 14. The effect of a subtracted bias on the logistic function.
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For a neuron in a hidden or output layer, the sum of the weighted inputs from
the preceding layer will be modified by subtracting a bias. The magnitudes of the
summation and bias will then determine the output from a sigmoidal (logistic) neuron.
A summation result much larger, or, much smaller, than the bias value will yield an
output value of one or zero, depending on the signs of the summation and bias, while
a summation result nearly equal to the bias value will yield an output between the
saturation values. We therefore observe that by learning to employ various bias
values, a network can control which neurons are "active", and which are "saturated", at
various locations in a data set.

A linear transfer function, Y, = X, , is also sometimes used for neurons in the
input and/or output layers. Applying a weight to this function changes the slope of
the resulting line, and subtracting a bias from the function’s argument translates the

line along the X axis.

Selected Network Structure. Recently, Cybenko® showed that finite linear
combinations of a single sigmoidal function, such as the logistic function described
earlier, can approximate, with any desired accuracy, any arbitrary function. This
means that, theoretically, a multilayer feed-forward artificial neural network, with just
one hidden layer of sigmoidal neurons, can be used to represent the mapping between
the various independent variables and the orbital lifetime of tethered systems. Of
course, a suitable number of neurons must be included in the hidden layer, and the
correct biases and interconnection weights must be found. The network structure

suggested by Cybenko’s result is attractive from two perspectives: First, as mentioned
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in the Introduction, it is known that "broad" networks, with few hidden layers, are
casier to train than "narrow" networks with many layers; second, restricting our
networks to just three layers of neurons -- input-hidden-output -- will simplify their
use by others. This is a significant consideration, as one of the objectives of this
research project is to provide computational tools, in the form of trained ANNs, which
may be used by others to quic™ly obtain an approximation of the orbital lifetime of a
system of interest.

The size of the input and output layers will be dictated by the problem being
solved. For example, if our desired result is an orbital lifetime estimate, we require
only one output neuron. The number of neurons in the input layer will be dictated by
the number of independent variables. The number of neurons in the hidden layer will
determine the accuracy of the mapping, and will be determined experimentally, as
discussed previously.

As shown in Figure 15, neurons in the input and output layers will apply the
linear transfer function discussed earlier, and hidden layer neurons will apply the
logistic function. Hence, we will be using an artificial neural network to implement

Cybenko’s theorem. The mathematical representation of the network’s output is

Y. =) - v, (70)
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Y; = (1 +exp(-X)))"

‘Yk=xk

Figure 15. Selected feed-forward network structure.

The Error Backpropagation Network Training Algorithm

According to Simpson,® the error backpropagation training algorithm was
independently derived by various individuals and groups, in wide-ranging disciplines,
beginning in 1967. In 1986, a group of cognitive and computer scientists --
Rumelhart, Hinton, and Williams®* -- publicized their derivation of backpropagation
training, and demonstrated some of its power and potential. The scientific community
took notice, and widespread interest in ANN capabilities and methods has flourished

ever since. Consequently, the group led by Rumelhart is usually credited with deriving
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the algorithm, although they actually only restated it and demonstrated its usefulness.
In any case, the 1986 "discovery” of the backpropagation training algorithm for feed-

forward networks is directly responsible for the state of the art today.

The Algorithm. The "standard” error backpropagation algorithm adjusts the weights

and biases in a network to minimize the cost function
1
E=:3Y3 (% -4, (M)
c k

where E represents the total error in a network’s performance, Y is the resultant value
provided by an output neuron, d is its desired value, c is an index over all training
cases presented to the network, and &, as before, is an index over all output units.

The parameter adjustment procedure is derived by computing the change in
the cost function produced by changes in tue network’s weights and biases. The
concept is simple: find the gradient vector of the cost function in parameter space
(i.e., in terms of the network weights and biases), and adjust the parameters to reduce
the cost. Since the gradient vector points in the direction of the cost function’s
maximum increase, we move in the opposite direction, to minimize the cost, and hence
the error in the network’s performance.

The gradient of E, in parameter space, is calculated using the chain rule of

differential calculus. For the output layer, assuming linear output neurons,

OE OE 0X, OE Y, dX,

- - (72)
oW, 3X,0W, 0, 0X,aW,

= (Y, - 4)Y,

J

|
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OE _OE X, OE dY, X, _

= = d -Y, 73
dv, 09X, dv, 0JY, 0X, dv, * * (73)
where we recall that the input to an output neuron is
X =2 (Wu¥)) - v (74)
J
For sigmoidal (logistic function) hidden layer neurons,
OE _OFE dX, dY dX, OE oY, dX, dY, oX
oW, 04X, dY dX oW, dY, dX, oY, aX oW, (15)
DA LAURRE
0E OE 0X, dY, 0X. OE dY, dX, oY, X
d; aX, oY a; o, o, aX, oY, aX; oy, (76)
[T (- RH]H( - )
and we recall that the input to a hidden layer neuron is
X = X (W,X) -, @

We note that the factor Y;(1-Y)), the derivative of the logistic function, appears
in Egs. (75) and (76). If the hidden layer neurons are initially saturated, due to large
mugnitude inputs, this factcr will equal zero, and no learning will occur. If the
magnitudes of the input vector components are large, this problem may possibly be
avoided by using large initial bias values on the hidden neurons, and/or by assigning
small initial connection weights between the input and hidden layers. A more reliable

approach is to map all input data to the interval (0,1), or perhaps (-1,1), the "sensitive"
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range of sigmoidal (logistic function) neurons, and use random initial weights and
biases between -1 and 1. These steps provide a reasonable chance for learning to
occur.

Since the gradient vector indicates the direction of maximum increase in the
cost function, as mentioned earlier, moving in the opposite direction should decrease

the total error. Hence, the parameters are adjusted using the relation
Ax(@) = -eg_E(t) + aAy(-1) (78)
X

where x represents either a weight or bias, € is the "learning rate", and a is a
“momentum"” term that specifies the extent of the influence of the previous change on
the current adjustment.

The procedure for network training is to take a small "step” in the direction of
maximum decrease of the cost function, by adjusting the weights and biases according
to Eq. (78). After a step is taken, we reevaluate the cost function and make another
adjustment, hoping to eventually reach a global, or at least acceptable, minimum of
the cost function. The "optimal” values for the learning rate and momentum will vary
with the topology of the error surface being traversed. An adaptive algorithm for
determining € and a is presented later in this Chapter.

The standard backpropagation training approach has been used very
successfully in various applications. Unfortunately, it has some difficulty in training

networks to represent real-valued functions that span several orders of magnitude,

precisely the situation we will encounter with orbital lifetime data for tethered systems.
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Problems with the standard approach are discussed in the next section, and an

alternative algorithm is derived.

The Minimum Percent Error Backpropagation Training Algorithm

Problem Description. Parameter adjustments are made in the standard
backpropagation training algorithm as a result of the magnitude of the (squared) error
between the desired and actual outputs. Consequently, a network trained to any
chosen accuracy level is likely to produce outputs with percent errors that are larger at
small magnitude output values than at large magnitude output values. This occurs
because a large percent error at a small value will often be smaller in magnitude than
a small percent error at a large value. Thus, a network may approximate large
function values quite well, but miss producing the desired output at small values by
large percentages.

If the desired output data spans more than one or two orders of magnitude,
the network will need to be trained to a very small error level to guarantee close
approximation of the smallest values. Reaching an extremely small error level when
training a network to represent widely-spread, real-valued data has been shown to be
a difficult, if not impossible, task.®’ In such a situation, we sometimes find that a
network trained to a very small error level has "memorized” the training data rather
than learned the boundaries and trends necessary for effective generalization. One

possible solution is to map the output data into a smaller interval.
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For example, if a network uses a linear output neuron to represent data
ranging in magnitude from 0.5 to 500, we may map the data to the interval (0, 10).
(If the output neuron is sigmoidal, the data would need to be mapped into the active
range of the sigmoidal function used.) As shown in Eq. (79), the mapping is
accomplished by subtracting 0.5 from each desired output data value, and dividing the

result by 49.95, one-tenth the range of the original data.

d - 05
d = vweded 7 (79)
scaled 49.95

Converting the scaled network output back to the original data range requires the

operation

Y

unscaled

= 49.95Y,_, + 0.5 (80)

Hence we see that an unscaled result of 0.5 requires a (scaled) network output of 0.0.
Any error will be magnified nearly 50 times. For example, an output of only 0.01,
rather than 0.0, would cause a 99.9 percent error in the corrected result (0.9995 vs.
0.5). By comparison, an unscaled result of 500 requires a network output of 10, and
an actual output of 10.01 translates to only a 0.1 percent error (500.4995 vs. 500).
Clearly, what is needed is some means of weighting the back-propagated error to
account for differences in output data magnitude. Such an algorithm is derived in the

next section.

Minimum Percent Error Backpropagation Training. As illustrated in the previous

section, the backpropagation algorithm, in its "standard” form, is not well suited for
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network training in the case of widely-spread, real-valued output data. Rather than
seeking a minimum of the total output error, we can instead minimize the sum of the
percent errors occurring at output. This will put the network’s performance at each
data point on an equal basis, rather than skewing the trained network’s accuracy in
favor of the largest magnitude data points.

Let E’ be the new cost function to be minimized, where

2
, _ 1 d, - Y, (81)
p-iry|ig ]

ke

This is the sum of squares of the percent errors occurring at output, including the
contributions of all output units and data points. Assuming linear output neurons and
sigmoidal (logistic function) hidden layer neurons, we may find the parameter space

components of the cost function’s gradient using the chain rule:

O’ OE' oX, OE &Y, X, (Y, -4, )
W, OX, oW, oY, ox,ow, | a2 |’
OE' _OE' 8X, OE' 0Y,0X, d, -Y, )
dv, OX, ov, 0Y,0X,ov, dZ
OE' ’E 8E' aX,|aY, ax, _ [2 3E' oY, axk] 8Y, ox,
W, |7 X, oY, |oX 3w, |4 oY, ox, ov, | oX, W, ”
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y
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(85)

A

1 3\
i E[dk Y, W,

3
G dk )

We note that the derivative of the logistic function appears in the equations
describing the dependence of changes in E’ on changes in W and v;. Hence, steps
must be taken to avoid initial saturation of the hidden layer neurons, as discussed
earlier. We also observe that these equations have an obvious singularity for a
desired output value of zero, because d, appears in each denominator. The singularity
may be avoided by substituting for zero a very small desired output value.

The network parameters are adjusted during training using Eq. (78). Training
may continue until the sum of the percent errors is below a desired tolerance, the
maximum percent error at every output data point is less than some desired limit, or
both. An adaptive algorithm to adjust the learning and momentum rates, and a
demonstration of the Minimum Percent Error (MPE) training algorithm, are

presented in the following sections.

Network Training Procedures

"Optimal" Learning and Momentum Rates. The training process may be visualized in

topographical terms. The cost function is represented as a surface in a (§ + 1)
dimension space, where § is the number of adjustable network parameters (i.c., the

weights and biases). The objective of network training is to reach a low elevation
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point, on the "error surface", where the cost function is a minimum. The surface is
traversed in steps, whose sizes are dictated by the values of the learning rate, €, and
the momentum, a, as shown in Eq. (78).

If training time were of no consequence, we would set the momentum to zero
and make the learning rate infinitesimally small. This, theoretically, would insure that
we eventually reach a low elevation area on the error surface - i.e., a global or local
minimum of the cost function. However, for most problems, training time using this
approach would be unacceptably long. Hence, we need a way to determine learning

and momentum rates that will yield minimum training time for any surface.

Adaptive Learning Rate Algorithm. If the learning rate is too large, a step may

it 4

overshoot a "valley", "sink hole", or other depression in the error surface.
Additionally, a non-zero momentum rate will hamper progress if the gradient reverses
direction, as will occur following an overshoot. However, if a relatively flat area of
the error surface is being traversed, the learning rate, and possibly the momentum,
may be reliably increased. These observations lead to an adaptive step-size
adjustment algorithm, detailed below:

e If the cost function value increases, an overshoot has occurred,
and the learning rate should be reduced and the momentum
set to zero.

e If the cost tunction value decreases and the gradient vector
changes direction significantly, a "twisted ravine" is being traversed;
the momentum should be set to zero and the learning ratc reduced.

e If the cost function value decreases, and the gradient vector
does not change direction significantly, a relatively flat surface
is being traversed; the learning rate and momentum may be increased.
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We may detect significant changes in the gradient vector’s direction using the

vector dot product,

{=4-B=|4]||B] cosf (86)

where 0 is the angle between vector 4 and vector B. If @ is within * 90 degrees, {
will be positive or zero. Hence, if the dot product of the current gradient vector and
the previous gradient vector is negative, we know that the direction of greatest
decrease in the cost function has changed by more than 90 degrees.

After interactively experimenting with various criteria, in various network
training scenarios, the following algorithm was chosen:

(1) If E(t) > E(t-1), then set e(t) = 0.25¢(t-1), and a(t) = 0.

(2) IfE(t) < E(t-1), and {(t) < 0, then set e(t) = 0.6e(t-1),
and a(t) = 0.

(3) If E(t) < E(t-1), and {(t) = 0, then set €(t) = 1.1€(t-1), and
Ifa(t-1) # 0, and a(t-1) < 0.9, then set a(t) = 1.5«(t-1).
If a(t-1) = 0, then set a(t) = 0.1.

The initial values for € and a are set to 0.01 and 0.009, respectively.

Parameter Adjustment. One way of using the gradient vector components is to adjust
the network parameters after every input-output case. Using this scheme, a network
can only adjust itself to correct for errors in representing the current data point. An
alternative approach, more commonly used, is to accumulate the components of the
gradient vector over all the input-output cases before changing the parameters. This
"batch method" allows the network to adjust itself in a way that will benefit the entire

data set, and is the approach used in this research project.
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Network Training Example

Network ‘Structure and Training Requirements. To demonstrate the utility of the
MPE algorithrh a three layer feed-forward net, following the structure shown in

Figure 15, was trained to represent the function
Y = (0.5 + 20x2) (87)

This function, as shown in Figure 16, is exponential, with Y ranging from 0.5 to 420 in
the X interval (0,1). Our goal is to train the network until the maximum percent error
at every (training) data point is less than 10%. The network has one linear irput
neuron, one linear output neuron, and 10 sigmoidal (logistic function) hidden neurons.

Eleven input-output pairs were used for training, with X (input) varying from Q to 1 in

increments of 0.1.

450 [T T T T
400 f ;
3s0 | :
300 £ :
250 |
200 }
150 |
100 |
50} '?

oi ————— "
00 03 02 03 04 OS5 08 07 08 09 10
X

Figure 16. Function to be learned.
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Resuits. The network was trained using the adaptive step size and batch parameter
adjustment procedures described previously. Figure 17 shows the accuracy evolution
of the network trained using both the standard backpropagation algorithm and the
MPE algorithm.

After 51,534 passes through the data, the MPE-trained network had reached a
maximum percent error, at any training data point, of slightly less than 10%. The sum
of the percent errors was 15.7%. In the same number of training passes, starting with
the same initial (random) parameter values, the standard backpropagation algorithm
trained the network to a maximum percent error of 25.3%, with a sum of percent
errors of 39.4%. Figures 18 and 19 show the inteipolation or "generalizing”
performance of the networks, in that the networks were tested using X values in
increments of 0.01 to create the figures. The points marked with an "0" indicate the

network’s accuracy at the training data points, which are in X increments of 0.1.

Hybrid Training Approach. Figure 17 shows that the standard method, early in the
training, produced a larger rate of decrease in the percent errors in the network’s
output than did the MPE algorithm. This initial success raises the question, what if
the two methods were combined? We observe that when using the standard method,
the percent errors quickly reached "plateau” values, and their rates of decrease
became very small. Hence the decision was made to begin with the standard method,
and switch to the MPE method, when the slope of the sum of the percent errors

curve became greater than —0.1% in 1000 passes.
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Figure 19. Generalization accuracy after standard method training.

As shown in Figure 20, this approach led to a greatly reduced training time.
The training method transition occurred after 6005 passes, when the standard
algorithm had trained the network to a maximum percent error in representing the
training data of 26.5%, and a sum of percent errors of 41.3%. In only 167 additional
passes the MPE algorithm was able to train the network to provide output values
within = 10% of the desired values. The sum of the percent errors at this point was
27.5%, indicating more error occurred than in the MPE-only case.

Figure 21 shows the "hybrid-trained" network’s generalization performance.
We note that this network does not generalize within the desired = 10% error

envelope. This situation can be rectified with additional training, or by adding more
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data to the training set. We also note that the network has "inherited" the tendency
of networks trained using the standard algorithm to misrepresent the smallest
magnitude data points. However, the MPE algorithm was able, in just 167 passes, to
reduce the training error to below the desired limit.

Figure 22 shows the generalization accuracy of the hybrid-trained network
when we let the MPE phase of the training continue for 45,362 additional passes - to
a total of 51,534 passes, the length of the original training session. At this point, the
network had a maximum percent error in representing the training data of only 4.7%,
and a sum of percent errors of 13.6%. We note from the figure that the network now
generalizes within the desired 10 % envelope, although the errors in representing the
untrained data are greater than those in representing the trained data. We also see
that the tendency to misrepresent the smallest magnitude values has persisted.

Hence we have demonstrated the ability of the MPE backpropagation
algorithm to train a feed-forward net to very accurately represent real-valued data
which spans several orders of magnitude. We have also shown that a "hybrid" training
approach -- standard backpropagation until the slope of the sum of the percent
errors curve is greater than -0.1% in 1000 passes, then MPE backpropagation -- can
often be used to obtain satisfactory results quicker than using the MPE method alone.

Unfortunately, the hybrid approach is not guaranteed to be the most efficient
approach in every case. The topology of the error surface representing the total mag-
nitude error may differ significantly from that of the surface representing the sum of

the percent errors. Hence, a low level elevation on one will not necessarily translate
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Figure 22. Generalization accuracy after combined training (51,534 passes total).

to a similar level on the other. However, the hybrid approach may be a useful
alternative in difficult training situations, or when one wishes to represent the largest
magnitude output values with more relative accuracy than is possible with MPE

training alone.




RESULTS AND DISCUSSION

In this Chapter, we illustrate the effect of various assumptions and physical
characteristics on tether orbit evolution, demonstrate the accuracy of the orbital
element propagation model (EPM) as compared to the muitibody model (MBM), and
present orbital lifetime results for free tethers and satellites trailing a tether. We will
also describe a procedure to modify predicted orbital lifetimes to compensate for
initial orbit inclinations other than 28.5°, and nonzero argument of perigee and true
anomaly values. In the final section of the Chapter, we demonstrate the reliability
and accuracy of the derived orbital lifetime prediction method, by comparing network-
produced results for a large number of randomly chosen test cases with those obtained
using the MBM.,

Unless stated otherwise, the assumptions described in the Introduction apply to
all presented results. They are listed here for convenience:

1. The tether is 2 mm in diameter, and has the physical properties of Kevlar
29: E (modulus of elasticity) = 6.2055 x 10" N/m? p (mass density) =
1440 kg/m®, v (Poisson’s ratio) = 0.4.

2. The tether is initially unstretched. The system is initially aligned along the
local vertical, orbiting as a rigid rod.

3. The system’s initial orbit inclination is 28.5°, and the argument of perigee
and true anomaly are zero.

4. Orbital lifetime is considered complete when the system center of mass
(CM) reaches 150 km altitude.

15
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Preliminary Findings and Basic Phenomena

In this section we use the MBM to investigate the effect of various
assumptions and physical properties on free tether orbital decay. We will present
results illustrating the effects on orbital lifetime of (1) the length of the segments used
to model a tether, (2) the drag coefficient model, (3) the Earth and atmosphere shape
and state assumptions, (4) the tether’s diameter, and (5) the tether’s length. In all but
the last of the five sub-sections which follow, we assume a 20 km tether has been
deployed downward from a 300 km (altitude) circular equatorial orbit, stabilized along
the local vertical, and released. In this case, all points below the "parent” end of the
tether are moving at speeds less than that required for circular orbit at their altitude.
This means the CM is at apogee of an elliptical orbit, whose apogee radius is 6668.137

km, and whose perigee radius is 6608.129 km (230 km altitude).

Segment Length Effect. Before beginning large scale investigations, we must decide
on the number of segments to be modeled in a tether of given length. As shown in
Figure 23, there is essentially no difference in the CM altitude-time history when the
tether is modeled with one hundred 200 meter segments (99 beads) or six 3% km
scgments (5 beads). Figure 24 shows that acceptable results were obtained even when
two 10 km segments were used. Hence, the segment length for all further simulations

was conservatively chosen to be 5 km.

Effect of Drag Coefficient Assumptions. Next, we investigated the effect of using the

empirically derived drag coefficient model described earlier, as compared to using a
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more commonly used constant value of 2.2. As shown in Figure 25, allowing C,, to
vary caused the most difference at low altitudes. This results from two factors: First,
the atmospheric mass density is relatively small at the higher altitudes, greatly reducing
the magnitude of aerodynamic forces, and hence the effect of the drag coefficient, in
that region; and second, a 2 mm diameter circular cylinder experiences free molecular
flow conditions (large Kn) to an altitude below 100 km, keeping it’s drag coefficient at
the free molecular value of 2.8. So, the differences in the altitude-time histories
shown in Figure 25 actually result from a magnitude difference of 0.6 in the drag

coefficient. All further simulations use the empirically derived C,, model.
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Figure 25. Effect of drag coefficient model on orbital decay.
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Effect of Earth and Atmosphere Assumptions. To demonstrate the effects of the
assumed shape of the Earth and the shape and state of the atmosphere on a tether’s
orbital decay, the simulation was run for 3 configurations: (1) assuming a spherical
Earth and a non-rotating, spherical atmosphere, (2) assuming a spherical Earth and a
rotating, spherical atmosphere, and (3) assuming an oblate Earth and a rotating,
oblate atmosphere. As shown in Figure 26, the oblate Earth and rotating, oblate
atmosphere model produced the shortest orbital lifetime. The spherical non-rotating
model produced an increased lifetime, apparently due to the increase in dissipative
drag forces being more than offset by the decrease in gravitational forces. As a
validation point, we note that the time required for the tether CM to reach 200 km
altitude in this case (2"4™17") is within 20 seconds of the result obtained by
Bergamaschi and Morana® when they used similar assumptions. Allowing the
spherical atmosphere to rotate increased the orbital lifetime, due to decreased drag
forces in a posigrade motion, but also caused the greatest departure from the results
obtained using the rotating oblate model.

Hence, we see that assuming an oblate Earth and a rotating, oblate
atmosphere yields lifetime results which are significantly different from those of the
simpler models. In all further simulations, the oblate, rotating models for the Earth

and its atmosphere were used.

Tether Diameter Effect. A more surprising result involves the effect of the tether’s
diameter on its orbital lifetime. One might intuitively believe that increasing a tether’s

diameter will reduce its lifetime, because the increased area will cause larger drag
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forces. However, as shown in Figure 27, increased diameter actually causes increased
orbital lifetime. The cross-sectional area and drag force magnitude increase with
increased diameter, but, as Eq. (88) shows, the ballistic coefficient, B8, actually
decreases, since it is inversely proportional to the diameter. In this equation, L is the
tether’s length, d is the tether’s diameter, A4 is its cross-sectional area (L x d), p g, iS

the tether’s mass density, and M is the tether’s mass.

G4 4CLd _ 4C, )
M  wLd*,  7dp,,

B

Because the tether’s mass is proportional to d? and the drag force is proportional to d,
the acceleration due to acrodynamic drag decreases as tether diameter increases.
Consequently, a large diameter tether dissipates less orbital energy per unit mass per
unit time than a small diameter tether, and will therefore have a longer orbital
lifetime. We assume a 2 mm diameter for all further simulations, and note that this is

the most common size proposed in the literature.

Length Effect. Equation (88) shows that a tether’s length has no effect on the
ballistic coefficient, and hence no effect on the force per unit mass experienced due to
drag forces. However, a long vertical, or near vertical, tether will encounter the more
dense portions of the atmosphere earlier in its lifetime than a short tether. Thus, a
long tether will dissipate orbital energy sooner than a short tether, reducing its
lifetime. This characteristic is illustrated in Figure 28, for two tethers of different
lengths. The CM of each tether was initially in a circular orbit, with an orbit

inclination of 40°, and a semi-major axis length of 6778.137 km.

L
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The results shown in Figure 28 illustrate a potential problem with using orbital
lifetime prediction techniques designed for use with single-mass satellites. Various
techniques for lifetime prediction and orbit propagation exist, with some of the most
well-known having been developed by Sterne®, Liu*, and King-Hele®!. Regardless of
the approach, the ballistic coefficient, in one form or another, is always an included
factor which brings the dissipative effects of aerodynamic drag into the analysis and
results. As we have shown, a tether’s ballistic coefficient is independent of its length,
but the length certainly has an effect on the orbital lifetime. Hence, we conclude that
single-mass orbital lifetime prediction methods will not properly account for tether

length effects, which may lead to significant errors in predicted lifetimes.
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Figure 28. Effect of tether length on orbital decay.
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The example results presented in Figure 28 show a length-induced difference in
lifetime to 150 km (altitude) of approximately 9.1 hours, which is 15% of the lifetime
of the 20 km tether, and 17% of the lifetime of the 100 km tether. We will return to
this topic later in this Chapter, and present results showing the general unreliability of

single-mass results for most tethered systems.

Element Propagation Model Performance

As discussed in the Mathematical Models Chapter, the orbital element
propagation model (EPM) relies on the assumptions that the tether is inextensible and
aligned along the local vertical at all times. The validity of these assumptions is
confirmed in this section by results obtained using the multibody model (MBM), which
show that both the in-plane and out-of-plane libration angles, though oscillatory,
remain small during orbital decay, even for systems in inclined orbits where out-of-
plane accelerations are significant. The libration angles indicate the displacement
between a straight line approximation for the tether, and the local vertical, as seen
from the parent’s location. A positive in-plane angle indicates the upper end (i.e., the
initially higher altitude end) of the system leads the lower end (i.e., the initially lower
altitude end). A positive out-of-plane angle indicates the subsatellite is currently
"north" of (i.e., above) the orbit plane of the parent.

In this section, results showing the accuracy of the EPM, as compared to the
MBM, for free tethers, satellites trailing a tether, and a tethered system (parent-

tether-subsatellite) are presented.
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Free Tether Performance. Figure 29 shows the CM altitude-time history of identical

20 km tethers, released in 3 different equatorial orbits. Each CM orbit was initially
circular, and the initial altitudes were 400 km, 450 km, and 500 km. As shown in the
figure, the percent differences in lifetime to 100 km between the EPM and the MBM
were quite small. These accuracies were obtained using an EPM time step of 1% of
an orbit period, and are typical of many other free tether scenarios tested, including
longer tethers and/or inclined orbits.

For example, the EPM lifetime of the 20 km tether presented in Figure 28
(icmo = 40°) was only 0.4% less than the MBM result. The EPM lifetime of the 100

km tether in Figure 28 differed by only 0.7% from the MBM resuit.
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Figure 29. Element propagation model performance with free tethers.




The element propagation technique also dramatically reduced computing time.
For example, simulation of the 14-day orbital decay shown in Figure 29 took nearly 5
hours on a Sun SPARC workstation, using the MBM. The EPM was used to simulate
the same decay, on the same machine, in just 58 seconds. This is an improvement in

the ratio of simulated orbit time to computing time of over 300 to 1.

Upward-Deployed Subsatellite Trailing a Tether. Performance of the EPM was tested
on a system composed of a 500 kg mass, 2 m diameter subsatellite, deployed upward
on a 20 km tether from a 300 km (altitude) circular orbit, and released. This scenario
simulates the behavior of NASA’s planned "TSS-1" experiment, if the tether happens

to be inadvertently, or purposely, freed from the Shuttle. As Figure 30 shows, the
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Figure 30. Element propagation model performance on "TSS-1"
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